Three axis (X, Y, Z direction) Electromagnetic Field Measurement **3 D ENF TESTER**

Model : EMF-828

ISO-9001, CE, IEC1010

The Art of Measurement

Three axis (X, Y, Z) electromagnetic field measurement **3 D EMF TESTER** Model : EMF-828

1. FEATURES

- * Three axis (X, Y, Z direction) electromagnetic field measurement.
- * The EMF tester is designed to provide user a quick, reliable and easy way to measure electromagnetic field radiation levels around power lines, electrical appliances and industrial devices.
- * Wide measuring ranges, 3 ranges of 20 micro Tesla, 200 micro Tesla & 2000 micro Tesla.
- * The EMF tester is a cost effective, hand-held instrument designed and calibrated to measure electromagnetic field radiation at wide bandwidths from 30 Hz to 300 Hz.
- * LCD display, jumbo digit size.
- * Data hold.
- * Separate probe, easy operation.
- * DC 9V battery power supply.
- * Hard case included.

2. APPLICATIONS

This EMF tester is specifically designed to determine the magnitude of electromagnetic field radiation generated by power lines, computer's monitor, TV sets, video machinery and many other similar devices.

3. SPECIFICATIONS

Display	LCD, 3 1/2 digits.
Dispidy	LCD size : 55 mm x 47 mm.
	Max. indication 1999 counts.
	With display units.
Range /	micro Tesla :
Resolution	20 micro Tesla/0.01 micro Tesla
Resolution	200 micro Tesla/0.1 micro Tesla
	2000 micro Tesla/1 micro Tesla mili-Gauss :
	200 mili-Gauss/0.1 mili-Gauss
	2,000 mili-Gauss/1 mili-Gauss
Number of Axis	20,000 mili-Gauss/10 mili-Gauss Three axis (X, Y, Z direction).
Dand width	Axis selected by push button.
Band width	30 Hz to 300 Hz.
Accuracy	$\pm (4\% + 3 d)$ @ 20 micro Tosla rango
	@ 20 micro Tesla range @ 200 mili Cause range
	@ 200 mili-Gauss range
	$\pm (5\% + 3 d)$
	@ 200 micro Tesla range. @ 2.000 mili Cause range
	@ 2,000 mili-Gauss range
	$\pm (10\% + 5 d)$
	@ 2,000 micro Tesla range.
	@ 20,000 mili-Gauss range
	* Spec. accuracy tested under 50 Hz
	or 60 Hz.
	* Spec. tested under the environment
	RF Field Strength less than 3 V/M &
Over input	frequency less than the 30 MHz only.
Over-input	Display shows "1".
Sampling Time	Approx. 0.4 second.
Battery	DC 9 V battery (006P, 6F22).
Power Current	Approx. DC 2.7 mA.
Operating Temp.	0 to 50 ℃ (32 to 122 °F).
Operating	Less than 85 %RH.
Humidity	4(0 + 101 + D) (including bottom)
Weight	460 g/1.01 LB (including battery).
Dimonolon	@ Including Probe and battery
Dimension	Main meter :
	$195 \times 68 \times 30 \text{ mm}$
	(7.6 x 2.6 x 1.2 inch)
	Probe :
	70 x 58 x 220 mm
	(2.8 x 2.3 x 8.7 inch).
Droho Calala	@ Sensor probe head : 75 x 58 mm.
Probe Cable	930 mm.
Length	On another Manual 1 DO
Accessories	Operation Manual 1 PC
Included	Carrying case 1 PC

4. CAUTION OF ELECTROMAGNETIC FIELD EXPOSURE

Claims by some scientists that long term exposure to electromagnetic field may be the cause of childhood leukemia & other forms of cancer.

Complete answers to any of these and related questions are not currently available. At the present time the most common practice is to avoid excess exposure over long period of time.

"Prudent Avoidance" as stated by the Environmental Protection Agency(EPA) USA is recommended.