

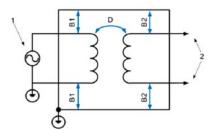
GPT-10000 Series

AC/DC/IR/GB Electrical Safety Analyzer

FEATURES

- 200VA/500VA AC Test Capacity (500VA short circuit current > 200mA)
- 7" TFT LCD
- Comply with IEC 61010-2-034 Design Requirement
- Manual Test Mode/Auto Test Mode
- RMS Current Measurement
- Zero Crossing Turn-on Operation
- Controllable Ramp-up & Ramp-down Time
- Statistics & Analysis Function
- Capacitive Load Testing Capability up to 47μF
- Sweep Function for DUT Characteristic Analysis
- Convenience Listed AUTO Mode Easy to Read Result and Judge
- Internal Storage and USB Storage Available
- Barcode Function Available
- Setting Data Export/Import
- Rear Panel Output Available
- Standard Interface: RS-232C, USB host/device and Signal I/O
- Optional Interface : GPIB or LAN
- Universal Power Input

GW Instek introduces the flagship model (500VA/200VA output capacity) safety analyzer-the GPT-10000 Series, which is the first safety analyzer in the world to comply with IEC 61010-2-034 (Safety requirement for electrical requirement for measurement, control and laboratory use – particular requirements for measurement equipment for insulation resistance and test equipment for electric strength), which stipulates that the requirements of the software and hardware interfaces must be followed while designing high voltage and insulation resistance test and measurement instruments so as to ensure that users are provided with necessary protection and warning while using the instruments.


The GPT-10000 Series safety analyzer has eight models: GPT-15004/GPT-12004 features AC/DC withstanding voltage test, insulation resistance test, AC ground bond test and continuity test; GPT-15003/GPT-12003 conducts AC/DC withstanding voltage test, insulation resistance test, and continuity test; GPT-15002/GPT-12002 carries out AC/DC withstanding voltage test and continuity test; GPT-15001/GPT-12001 executes AC withstanding voltage test and continuity test. The entire series utilizes a high-efficient PWM amplifier to effectively exclude the influence from the fluctuating input voltage or distorted waveforms so as to guarantee a stable high-voltage output while conducting AC withstanding voltage test on the DUT to meet the safety regulations such as IEC \cdot EN \cdot UL \cdot CSA \cdot GB \cdot JIS that demand the test requirements for various electronic/electrical products or parts.

To comply with IEC 61010-2-034 requirements, the series takes into account of safety by adopting the double insulation design for input power supply and output voltage to enhance user safety. Additionally, the retracted on-off switch design (START key) and various (optional) mechanisms for test activation (for instance, press and hold for 1 second to activate, activation by pressing double keys, etc.) are incorporated into the series to avoid accidentally touching that results in high voltage/large current output causing damage and danger to products or users. High illumination LED lights (flashing or permanently lit) and a high volume audial indicator are included in designing the series to provide warnings of the status of the on-going tests or judgement results from the safety analyzer. On top of that, the DUT will be automatically discharged to the safe voltage (approximately 30V) after each test to prevent large residual test voltage from causing harm to users.

The series utilizes 7-inch color TFT LCD and inherits the consistent simplicity key design style of the product family to allow users to experience easy operations and a clear observation of the test results. The major test functions include AC withstanding voltage test (AC 5kV), DC withstanding voltage test (DC 6kV), insulation resistance test (DC 50V~1200V), ground bond test (AC 32A), and grounding continuity test (DC 100mA fixed). The series also collocates with superb output adjustment resolution, measurement resolution (AC withstanding voltage: 1μ A; DC withstanding voltage: 0.1μ A; insulation resistance: $0.1M\Omega$; ground bond: $0.1m\Omega$; continuity test: 0.01Ω), controllable voltage ramp up and ramp down time settings, and upper/lower limit judgement settings, and large capacitance test capability (up to 47μ F) for DUT with large capacitance such as surge absorber and large capacitance on the input terminal of EMC/EMI prevention. For Insulation resistance, provides 10mA pre-charged current (fixed) to first rapidly fully charge the DUT's capacitive load and then to conduct test and measurement so as to avoid misjudgment from fluctuating inrush current. All the above features of the series facilitate a more flexible execution of the required tests so that users can obtain accurate test and measurement results.

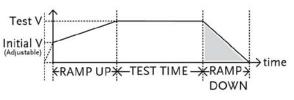
The statistic function is the highlight of the series. Test items, number of tests, judgement results are recoded after testing and the test results can be shown by bar graph on the display. Users can immediately learn the status of product tests and judgement distribution during the manufacturing process without using a PC. The other strong feature is the sweep function, which can be used for the analysis on product's crash point. Users can use the sweep mode to see the curve diagram of the test results after finishing the functional tests. Users can also select any time point during the process to analyze the relation between voltage and current (when ACW or DCW is selected). The test result of the certain period of time can be swept by setting start and stop time points to analyze the relation between voltage and current under that time frame. Furthermore, the tabular continuity test function can combine 10 manual memory sets to carry out automatic tests or 9 manual memory sets with one connection device to connect next automatic test so as to increase the test items of the continuity test. Users can obtain various test values and judgement results without switching to a different display screen.

Other functions and features of the GPT-10000 series include 100 sets of manual test as well as 100 sets of auto test memory for the storage of different test conditions and the saved test conditions can be exported to another GPT-10000 through USB flash drive to quick replication and expansion of production line equipment; barcode scanner can be conducted to the front panel USB host of GPT-10000 for managing test condition of DUT and then be able to quick and correctly recall required test condition; rear output terminal for system integration; front panel remote control terminal mount/rear panel Signal I/O for users to conveniently control the analyzer's output/stop based upon the requirements. The USB storage function allows test results to be stored in the USB flash drive or internal memory to save the trouble of using a PC, and the function is conducive to the follow-up data analysis. For users with the requirements of PC control and test results recording, the series also provides RS-232C, USB and option GPIB or LAN.

Providing the markets with safe electronic products is the responsibility of every manufacturer! Similarly, safety analyzer that tests whether electronic products meet safety regulations must attach the importance to the safety it provides! GPT-10000 Series is the world's first safety analyzer to comply with IEC 61010-2-034 (Safety requirement for electrical requirement for measurement, control and laboratory use – particular requirements for

measurement equipment for insulation resistance and test equipment for electric strength). Apart from this, the safety considerations also include double insulation for input and output voltages, safe output/warning mechanism, post-test discharge mechanism, etc. to ensure user safety during the operation.

HIGH ACCURACY AND HIGH RESOLUTION TESTING PERFORMANCE



High Adjustment & Measurement Resolution

For production tests and characteristic verification, the GPT-10000 Series provides a withstand voltage test voltage (AC 5kV/DC 6kV) that can be adjusted in 1V steps with current measurement resolutions up to 1 μ A (ACW) or 0.1 μ A (DCW) to realize the small leakage current measurement for products or components. In addition, the insulation resistance test voltage can be adjusted in 50V steps from a DC output range of 50V to 1200V, and the resistance measurement resolution can reach 0.1M Ω . Since most safety regulations require AC power supply for ground bond test, the

GPT-10000 Series provides 8Vac (open) and 3A to 32Aac current for ground bond test with a resistance measurement resolution of $0.1 m\Omega$. The entire series provides the continuity grounding test function with a 100mAdc (fixed) test source and a measurement resolution of 0.01Ω to detect if the tested equipment is correctly grounded. With these functions, users can perform various safety tests and verifications with high accuracy and reliability.

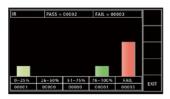
FLEXIBLE SUPPLEMENTARY TESTING MECHANISM

Testing Period Timing

To make tests compliant with the test requirements of relevant safety regulations, the GPT-10000 Series provides a more flexible output sequence setting starting from the start point of the test. Taking the AC/DC withstand voltage test as an example, the initial voltage can be set. Users determine the initial voltage ratio (i.e., the ratio of the rated test voltage), and then the voltage ramp up can also be set to reduce the risk of insulation breakdown or damage to the DUT caused by transient high voltages. After the rated test voltage is reached, the upper/lower limit judgement window, delay judgment and test timer mechanism can be set to assist users to conduct tests smoothly and correctly. The new voltage ramp down time setting allows users to test with a ramp down voltage to

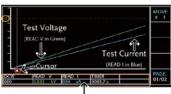
avoid the impact of excessively high rated test voltage to instantaneous discharge on the DUT.

With respect to the insulation resistance test, other than the newly added grounding mode to perform test in accordance with the actual grounding state of the DUT, the setting mechanism of the supplementary upper/lower limit judgement is also added to shorten the test time. The user-definable mode mechanisms include: STOP ON FAIL: The test is terminated as soon as the FAIL setting is met; STOP ON PASS: The test is terminated as long as the PASS setting is met, or TIMER: judgement is conducted when the timer time is reached.


PASS, FAIL Amounts & TOTAL Amounts

PASS & FAIL Amounts Distributions in Each Test Function

Statistic


The GPT-10000 Series provides the statistic function, which can record the test functions and judgment results in the temporary storage area (60,000 lots max.). Users can immediately learn the test of each function during the test without using a PC. The distribution of the good products can be analyzed to understand the quality of the batch based on the data. If most

Analysis

of them fall at the critical point that is close to be categorized as defect product, the results can be found in the test process in time so as to improve the manufacturing process and stop the defect products from entering the markets to ensure the reliability of products after leaving the factory.

SWEEP AND TABULAR AUTOMATIC TEST

The values of point by cursor

Sweep Function

The GPT-10000 Series features a unique sweep function, which displays a curve diagram of the test results of the DUT. Test readings are recorded point by point based on the applied test voltage or current and relevant settings (such as initial voltage, ramp up time, test time, or ramp down time). After the test is completed, users can learn the amount of applied energy (voltage or current) at a specific time point and the results of measurement parameters by moving the cursor position so as to help users understand the changes of the measurement parameters (current or resistance) during the test. The function can also be used to determine the

mixed-type production lines. By scanning the barcode of the DUT, GPT-

Tabular Automatic Test

critical break down of the DUT. With respect to the automatic test function, each automatic test has up to 10 manual test items and all related settings and result judgement are presented in a table, so that users can easily obtain the results of all test items at a time. Other than that, if there are multiple automatic test connection requirements, uses only need to select CON in the last item of the table to automatically connect the automatic measurement of the next position (such as AUTO-012 ~ AUTO-013)

F. BARCODE FUNCTION

The scanned barcode is set with AUTO-001 with AUTO TEST ON

PAGE-001

MODE NUMBERS NAME AUTO MANUAUTO

MODE NUMBERS NAME

4710123134556

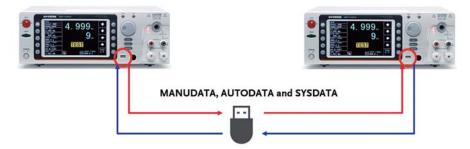
AUTO

AUTO

AUTO

AUTO

EXIT


Barcode Setting

GPT-10000 Series supports the connection mechanism of the barcode machine. Users can manage the test conditions of each DUT through the use and setting of the barcode machine, which is especially suitable for

Barcode Execute

10000 Series can automatically reveal the corresponding test conditions, which can avoid using wrong conditions and causing damage to the DUT.

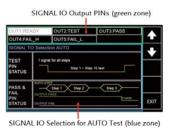
Setting Data Export / Import

In order to expedite the deployment of the production line and achieve the consistency of test conditions, GPT-10000 Series provides a mechanism that can replicate test conditions. Users only need to set test conditions

for one unit, and all settings can be copied via a USB flash drive. Other than the rapid setting of consistent test conditions, it can also avoid the difference while conducting settings.

Н.

COMPLETE TEST DATA RETRIEVAL INTERFACE



Storage Function

In order to facilitate users to analyze the results of the safety test, GPT-10000 Series provides the USB storage function in addition to its own statistic and analysis functions. When a USB is inserted and the storage function is activated, each time the test button (START) is pressed, the test results of all tests (every manual or automatic test item) are automatically saved to the USB in the form of a text file (txt) for follow-up analysis. When

there is no USB flash drive available, users can turn on the internal memory storage function (up to 30,000 lots) to store the results of each test in theinternal memory first, and then transfer them to an external device via a USB flash drive when available. Besides, the entire series is equipped with RS-232C and USB device (GPIB or LAN is optional) for easy retrieval of test data and results by connecting a PC.

USER DEFINED SIGNAL I/O

Self-defined Signal I/O

For interface connections, the GPT-10000 Series offers external control or a variety of remotely connected ports such as a signal I/O port that can be used to connect an external controller or PLC. The signal I/O's output

signal pins can be self-defined so as to collocate with various PLC control requirements.

PANEL INTRODUCTION

- 1. Start & Stop Button
- 2. Function Selection Key
- 3. 7" LCD Display
- 4. Navigator Key
- 5. Status Indicator (PASS/FAIL)
- 6. Wheel & Test Mode key
- 7. USB Host
- 8. REMOTE Terminal
- 9. Hi-Voltage Output Terminal & Indicator
- 10. Current Output Terminal & Return
- 11. Rear Output Terminal & Indicator
- 12. Series Port (RS-232C/USB device)
- 13. Signal I/O
- 14. GPIB or LAN (optional)

- 1. Start & Stop Button
- 2. Function Selection Key
- 3. 7" LCD Display
- 4. Navigator Key
- 5. Status Indicator (PASS/FAIL)
- 6. Wheel & Test Mode key
- 7. USB Host
- 8. REMOTE Terminal
- 9. Hi-Voltage Output Terminal & Indicator
- 10. Current Output Terminal & Return
- 11. Rear Output Terminal & Indicator
- 12. Series Port (RS-232C/USB device)
- 13. Signal I/O
- 14. GPIB or LAN (optional)

GPT-15004 AC/DC/IR/GB Electrical Safety Analyzer

GPT-15003 AC/DC/IR Electrical Safety Analyzer

GPT-15002 AC/DC Electrical Safety Analyzer

GPT-15001 AC Electrical Safety Analyzer

GPT-12004 AC/DC/IR/GB Electrical Safety Analyzer

GPT-12003 AC/DC/IR Electrical Safety Analyzer

GPT-12002 AC/DC Electrical Safety Analyzer

GPT-12001 AC Electrical Safety Analyzer

SPECIFICATIONS MODEL	GPT-15000 Series	GPT-12000 Series			
	GPT-15000 Series	GP1-12000 Series			
AC WITHSTANDING					
Output-Voltage Range Output-Voltage Resolution	0.050kV~5.000kV	0.050kV~5.000kV			
Output-Voltage Accuracy	$\pm (1\% \text{ of setting} + 5\text{V}) \text{ [no load]}$	$\pm (1\% \text{ of setting} + 5\text{V}) \text{ [no load]}$			
Maximum Rated Load	500 VA (5kV/100mA)	200 VA (5kV/40mA)			
Maximum Rated Current	100mA (0.5kV < V ≤ 5kV); 10mA (0.05kV ≤ V ≤ 0.5kV)	40mA ($0.5 \text{kV} < \text{V} \le 5 \text{kV}$); 10mA ($0.05 \text{kV} \le \text{V} \le 0.5 \text{kV}$)			
Output-Voltage Waveform	Sine wave	Sine wave			
Output-Voltage Frequency	50 Hz / 60 Hz selectable ±(1% + 5V) [maximum rated load no load]	50 Hz / 60 Hz selectable $\pm (1\% + 5\text{V})$ [maximum rated load no load]			
Voltage Regulation Voltmeter Accuracy	$\pm (1\% + 5\text{V})$ [maximum rated load no load] $\pm (1\% \text{ of reading} + 5\text{V})$	$\pm (1\% + 5V)$ [maximum rated load = no load] $\pm (1\%$ of reading + 5V)			
Current Measurement Range	1μΑ~100.0mA	1µA~40.00mA			
Current Best Resolution	1μΑ / 10μΑ / 100μΑ	1μΑ / 10μΑ			
Current Measurement Accuracy	\pm (1.5% of reading + 30 μ A)	$\pm (1.5\% \text{ of reading} + 30\mu\text{A})$			
Current Offset	60µA Maximum	60μA Maximum			
Window Comparator Method ARC Detect	Yes Yes	Yes Yes			
RAMP UP (Rise Time)	0.1s~999.9s	0.1s~999.9s			
RAMP DOWN (Fall Time)	0.0s~999.9s	0.0s~999.9s			
TIMER (Test Time)*	OFF, 0.3s~999.9s	OFF, 0.3s~999.9s			
WAIT TIME	0.0s~999.9s	0.0s~999.9s			
GND	ON/OFF	ON/OFF			
DC WITHSTANDING					
Output-Voltage Range Output-Voltage Resolution	0.050kV~6.000kV	0.050kV~6.000kV			
Output-Voltage Resolution Output-Voltage Accuracy	1V $\pm (1\% \text{ of setting } + 5\text{V}) \text{ [no load]}$	1V ±(1% of setting + 5V) [no load]			
Maximum Rated Load	$\pm (1\% \text{ of Setting} + 3V)$ [no load] 100W (5kV/20mA)	50W (5kV/10mA)			
Maximum Rated Current	$20mA (0.5kV < V \le 6kV); 2mA (0.05kV \le V \le 0.5kV)$	$10mA (0.5kV < V \le 6kV); 2mA (0.05kV \le V \le 0.5kV)$			
Voltage Regulation	±(1% + 5V) [maximum rated load no load]	±(1% + 5V) [maximum rated load no load]			
Voltmeter Accuracy	$\pm (1\% \text{ of reading } + 5\text{V})$	$\pm (1\% \text{ of reading} + 5\text{V})$			
Current Measurement Range	1μΑ~20.00mA	1μA~10.00mA			
Current Best Resolution Current Measurement Accuracy	0.1μA /1μA /10μA ±(1.5% of reading + 3μA) when I Reading < 1mA;	0.1μA /1μA /10μA ±(1.5% of reading + 3μA) when I Reading < 1mA;			
Current Weasurement Accuracy	±(1.5% of reading + 3µA) when I Reading ≥ 1mA, ±(1.5% of reading + 30µA) when I Reading ≥ 1mA	±(1.5% of reading + 3µA) when I Reading ≥ 1mA, ±(1.5% of reading + 30µA) when I Reading≥ 1mA			
Current Offset	5µA Maximum	5µA Maximum			
Window Comparator Method	Yes	Yes			
ARC Detect	Yes	Yes			
RAMP UP (Rise Time)	0.1s~999.9s	0.1s~999.9s			
RAMP DOWN (Fall Time) TIMER (Test Time)*	0.0s~999.9s OFF, 0.3s~999.9s	0.0s~999.9s OFF, 0.3s~999.9s			
WAIT TIME	0.0s~999.9s	0.0s~999.9s			
GND	ON/OFF	ON/OFF			
INSULATION RESISTANCE					
Output Voltage	50V~1200V dc	50V~1200V dc			
Output-Voltage Resolution	50V $\pm (1\% \text{ of setting } + 5V) \text{ [no load]}$	50V ±(1% of setting + 5V) [no load]			
Output-Voltage Accuracy Resistance Measurement	$\pm (1\% \text{ of Setting} + 3V)$ [no load]	±(1% of setting + 5V) [no load]			
Test Voltage Display Range	Measurement Range / Accuracy				
50V≦V≦100V 0.1MΩ~10.00GΩ	$0.1M\Omega\sim1M\Omega$:±(5% of reading+3count);	$0.1M\Omega\sim1M\Omega$:±(5% of reading+3count);			
30V ≦ V ≦ 100V 0.1MΩ2~10.00GΩ2	$1M\Omega \sim 50M\Omega$: ±(5% of reading+1count);	$1M\Omega \sim 50M\Omega$:±(5% of reading+3count);			
150V≦V≦450V 0.1MΩ~20.00GΩ	$51M\Omega \sim 2G\Omega: \pm (10\% \text{ of reading+1count})$	$51M\Omega \sim 2G\Omega$: ±(10% of reading+1count)			
	0.1MΩ~1MΩ:±(5% of reading+3count);	$0.1M\Omega\sim1M\Omega$:±(5% of reading+3count);			
$500V \le V \le 1200V 0.1MΩ \sim 50.00GΩ$	TO TIME TO THE PARTICULAR TO T	TO THE PARTY OF THE PARTY OF THE SECONDARY.			
	, ,	,			
200 1 _ 12001 V.110122-30000022	$1M\Omega$ ~500MΩ:±(5% of reading+1count);	$1M\Omega$ ~500MΩ:±(5% of reading+1count);			
	$1M\Omega$ ~500MΩ:±(5% of reading+1count); 501MΩ~9.999GΩ:±(10% of reading+1count);	$1M\Omega \sim 500M\Omega$:±(5% of reading+1count); $501M\Omega \sim 9.999G\Omega$:±(10% of reading+1count);			
	$1M\Omega$ ~500MΩ:±(5% of reading+1count); 501MΩ~9.999GΩ:±(10% of reading+1count); $10G\Omega$ ~50GΩ:±(20% of reading+1count)	$1M\Omega \sim 500M\Omega$:±(5% of reading+1count); $501M\Omega \sim 9.999G\Omega$:±(10% of reading+1count); $10G\Omega \sim 50G\Omega$:±(20% of reading+1count)			
Voltage Regulation	$\begin{array}{l} 1M\Omega \sim 500M\Omega: \pm (5\% \ of \ reading+1 count); \\ 501M\Omega \sim 9.999G\Omega: \pm (10\% \ of \ reading+1 count); \\ 10G\Omega \sim 50G\Omega: \pm (20\% \ of \ reading+1 count) \\ \pm (1\% + 5V) \ [maximum \ rated \ load no \ load] \end{array}$	$1M\Omega \sim 500M\Omega: \pm (5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega: \pm (10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega: \pm (20\% \text{ of reading+1count})$ $\pm (1\% + 5V) \text{ [maximum rated load no load]}$			
	$1M\Omega$ ~500MΩ:±(5% of reading+1count); 501MΩ~9.999GΩ:±(10% of reading+1count); $10G\Omega$ ~50GΩ:±(20% of reading+1count)	$1M\Omega \sim 500M\Omega$:±(5% of reading+1count); $501M\Omega \sim 9.999G\Omega$:±(10% of reading+1count); $10G\Omega \sim 50G\Omega$:±(20% of reading+1count)			
Voltage Regulation Voltmeter Accuracy	$1M\Omega \sim 500M\Omega: \pm (5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega: \pm (10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega: \pm (20\% \text{ of reading+1count})$ $\pm (1\% + 5V) \text{ [maximum rated load no load]}$ $\pm (1\% \text{ of reading + 5V)}$	$1M\Omega \sim 500M\Omega: \pm (5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega: \pm (10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega: \pm (20\% \text{ of reading+1count})$ $\pm (1\% + 5V) \text{ [maximum rated load - no load]}$ $\pm (1\% \text{ of reading + 5V)}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method	$\begin{array}{l} 1M\Omega \sim 500M\Omega : \pm (5\% \text{ of reading+1count}); \\ 501M\Omega \sim 9.999G\Omega : \pm (10\% \text{ of reading+1count}); \\ 10G\Omega \sim 50G\Omega : \pm (20\% \text{ of reading+1count}) \\ \\ \pm (1\% + 5V) \text{ [maximum rated load no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10\text{mA max.} \\ 2k\Omega \\ \text{Yes} \end{array}$	$1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})$ $\pm(1\% + 5\text{V}) \text{ [maximum rated load no load]}$ $\pm(1\% \text{ of reading + 5V})$ 10mA max. $2k\Omega$ Yes			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time)	$\begin{array}{l} 1M\Omega \sim 500M\Omega : \pm (5\% \ of \ reading + 1 count); \\ 501M\Omega \sim 9.999G\Omega : \pm (10\% \ of \ reading + 1 count); \\ 10G\Omega \sim 50G\Omega : \pm (20\% \ of \ reading + 1 count) \\ \\ \pm (1\% + 5V) \ [maximum \ rated \ load - no \ load] \\ \pm (1\% \ of \ reading + 5V) \\ 10mA \ max. \\ 2k\Omega \\ Yes \\ 0.1s \sim 999.9s \end{array}$	$1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})$ $\pm(1\% + 5V) \text{ [maximum rated load - no load]}$ $\pm(1\% \text{ of reading + 5V)}$ 10mA max. $2k\Omega$ Yes $0.1s \sim 999.9\text{s}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time)	$\begin{array}{l} 1M\Omega \sim 500M\Omega : \pm (5\% \ of \ reading + 1 count); \\ 501M\Omega \sim 9.999G\Omega : \pm (10\% \ of \ reading + 1 count); \\ 10G\Omega \sim 50G\Omega : \pm (20\% \ of \ reading + 1 count) \\ \\ \pm (1\% + 5V) \ [maximum \ rated \ load no \ load] \\ \pm (1\% \ of \ reading + 5V) \\ 10mA \ max. \\ 2k\Omega \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \end{array}$	$1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})$ $\pm(1\% + 5V) \text{ [maximum rated load no load]}$ $\pm(1\% \text{ of reading + 5V})$ 10mA max. $2k\Omega$ Yes $0.1s \sim 999.9s$ $0.0s \sim 999.9s$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)**	$1M\Omega \sim 500M\Omega: \pm (5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega: \pm (10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega: \pm (20\% \text{ of reading+1count})$ $\pm (1\% + 5V) \text{ [maximum rated load - no load]}$ $\pm (1\% \text{ of reading + 5V)}$ $10mA \text{ max.}$ $2k\Omega$ Yes $0.1s \sim 999.9s$ $0.0s \sim 999.9s$ $0.3s \sim 999.9s$	$1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})$ $\pm(1\% + 5V) \text{ [maximum rated load no load]}$ $\pm(1\% \text{ of reading + 5V)}$ 10mA max. $2k\Omega$ Yes $0.1s \sim 999.9s$ $0.0s \sim 999.9s$ $0.3s \sim 999.9s$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time)	$\begin{array}{l} 1M\Omega \sim 500M\Omega : \pm (5\% \ of \ reading + 1 count); \\ 501M\Omega \sim 9.999G\Omega : \pm (10\% \ of \ reading + 1 count); \\ 10G\Omega \sim 50G\Omega : \pm (20\% \ of \ reading + 1 count) \\ \\ \pm (1\% + 5V) \ [maximum \ rated \ load no \ load] \\ \pm (1\% \ of \ reading + 5V) \\ 10mA \ max. \\ 2k\Omega \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \end{array}$	$1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})$ $\pm(1\% + 5V) \text{ [maximum rated load no load]}$ $\pm(1\% \text{ of reading + 5V})$ 10mA max. $2k\Omega$ Yes $0.1s \sim 999.9s$ $0.0s \sim 999.9s$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME	$ 1M\Omega \sim 500M\Omega: \pm (5\% \text{ of reading+1count}); \\ 501M\Omega \sim 9.999G\Omega: \pm (10\% \text{ of reading+1count}); \\ 10G\Omega \sim 50G\Omega: \pm (20\% \text{ of reading+1count}) \\ \pm (1\% + 5V) \text{ [maximum rated load no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10mA \text{ max.} \\ 2kΩ \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.3s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s $	$1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})$ $\pm(1\% + 5V) \text{ [maximum rated load - no load]}$ $\pm(1\% \text{ of reading + 5V)}$ $10mA \text{ max.}$ $2k\Omega$ Yes $0.1s \sim 999.9s$ $0.0s \sim 999.9s$ $0.0s \sim 999.9s$ $0.0s \sim 999.9s$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND	$ 1M\Omega \sim 500M\Omega: \pm (5\% \text{ of reading+1count}); \\ 501M\Omega \sim 9.999G\Omega: \pm (10\% \text{ of reading+1count}); \\ 10G\Omega \sim 50G\Omega: \pm (20\% \text{ of reading+1count}) \\ \pm (1\% + 5V) \text{ [maximum rated load no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10mA \text{ max.} \\ 2kΩ \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.3s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s $	$1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});$ $501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});$ $10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})$ $\pm(1\% + 5V) \text{ [maximum rated load - no load]}$ $\pm(1\% \text{ of reading + 5V)}$ $10mA \text{ max.}$ $2k\Omega$ Yes $0.1s \sim 999.9s$ $0.0s \sim 999.9s$ $0.0s \sim 999.9s$ $0.0s \sim 999.9s$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution	1MΩ~500MΩ:±(5% of reading+1count); 501MΩ~9.999GΩ:±(10% of reading+1count); 10GΩ~50GΩ:±(20% of reading+1count) ±(1% + 5V) [maximum rated load no load] ±(1% of reading + 5V) 10mA max. 2kΩ Yes 0.1s~999.9s 0.0s~999.9s 0.0s~999.9s 0.0s~999.9s ON/OFF 03.00A~32.00A ac 0.01A	1MΩ~500MΩ:±(5% of reading+1count); 501MΩ~9.999GΩ:±(10% of reading+1count); 10GΩ~50GΩ:±(20% of reading+1count) ±(1% + 5V) [maximum rated load no load] ±(1% of reading + 5V) 10mA max. 2kΩ Yes 0.1s~999.9s 0.0s~999.9s 0.0s~999.9s 0.0s~999.9s ON/OFF			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current	$\begin{array}{l} 1M\Omega \sim 500M\Omega : \pm (5\% \ of \ reading + 1 count); \\ 501M\Omega \sim 9.999G\Omega : \pm (10\% \ of \ reading + 1 count); \\ 10G\Omega \sim 50G\Omega : \pm (20\% \ of \ reading + 1 count) \\ \\ \pm (1\% + 5V) \ [maximum \ rated \ load - no \ load] \\ \pm (1\% \ of \ reading + 5V) \\ 10mA \ max. \\ 2k\Omega \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ ON/OFF \\ \\ \\ \hline 03.00A - 32.00A \ ac \\ 0.01A \\ 3A \leq I \leq 8A : \pm (1\% \ of \ reading + 0.2A); \\ \end{array}$	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\% + 5V) \text{ [maximum rated load no load]}\\ &\pm(1\% \text{ of reading} + 5V)\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ &03.00A - 32.00A \text{ ac}\\ &0.01A\\ &3A \leq I \leq 8A: \pm(1\% \text{ of reading+0.2A}); \end{split}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution Output-Current Accuracy	1MΩ~500MΩ:±(5% of reading+1count); 501MΩ~9.999GΩ:±(10% of reading+1count); 10GΩ~50GΩ:±(20% of reading+1count) ±(1% + 5V) [maximum rated load - no load] ±(1% of reading + 5V) 10mA max. 2kΩ Yes 0.1s~999.9s 0.0s~999.9s 0.0s~999.9s 0.0s~999.9s ON/OFF 03.00A~32.00A ac 0.01A 3A≤I≤8A:±(1% of reading+0.2A); 8A <i≤32a:±(1% of="" reading+0.05a)<="" td=""><td>$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\% + 5V) \text{ [maximum rated load - no load]}\\ &\pm(1\% \text{ of reading + 5V)}\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ \\ &03.00A \sim 32.00A \text{ ac}\\ &0.01A\\ &3A \leq 1 \leq 8A:\pm(1\% \text{ of reading+0.2A});\\ &8A < 1 \leq 32A:\pm(1\% \text{ of reading+0.05A}) \end{split}$</td></i≤32a:±(1%>	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\% + 5V) \text{ [maximum rated load - no load]}\\ &\pm(1\% \text{ of reading + 5V)}\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ \\ &03.00A \sim 32.00A \text{ ac}\\ &0.01A\\ &3A \leq 1 \leq 8A:\pm(1\% \text{ of reading+0.2A});\\ &8A < 1 \leq 32A:\pm(1\% \text{ of reading+0.05A}) \end{split}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution Output-Current Accuracy Test-Voltage	$ 1MΩ \sim 500MΩ: \pm (5\% \text{ of reading+1count}); \\ 501MΩ \sim 9.999GΩ: \pm (10\% \text{ of reading+1count}); \\ 10GΩ \sim 50GΩ: \pm (20\% \text{ of reading+1count}) \\ \pm (1\% + 5V) \text{ [maximum rated load - no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10mA \text{ max.} \\ 2kΩ \\ \text{Yes} \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ ON/OFF \\ \hline $	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\%+5\text{V}) \text{ [maximum rated load no load]}\\ &\pm(1\% \text{ of reading + 5V})\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s\sim 999.9s\\ &0.0s\sim 999.9s\\ &0.0s\sim 999.9s\\ &0.0s\sim 999.9s\\ &0.0s\sim 999.9s\\ &ON/OFF\\ \\ \\ &03.00A\sim 32.00A \text{ ac}\\ &0.01A\\ &3A\leqq I\leqq 8A:\pm(1\% \text{ of reading+0.2A});\\ &8A< I\leqq 2A:\pm(1\% \text{ of reading+0.05A})\\ &8\text{Vac max (open circuit)} \end{split}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution Output-Current Accuracy Test-Voltage Test-Voltage Test-Voltage	$ 1MΩ \sim 500MΩ: \pm (5\% \text{ of reading+1count}); \\ 501MΩ \sim 9.999GΩ: \pm (10\% \text{ of reading+1count}); \\ 10GΩ \sim 50GΩ: \pm (20\% \text{ of reading+1count}) \\ \pm (1\% + 5V) \text{ [maximum rated load - no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10mA \text{ max.} \\ 2kΩ \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ ON/OFF \\ \hline $	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\%+5\text{V}) \text{ [maximum rated load - no load]}\\ &\pm(1\% \text{ of reading + 5V})\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ &0.18 \sim 999.9s\\ &0.0s \sim 999.9s$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution Output-Current Accuracy Test-Voltage Test-Voltage Test-Voltage Test-Voltage Frequency Ohmmeter Measurement Range	$ 1MΩ \sim 500MΩ: \pm (5\% \text{ of reading+1count}); \\ 501MΩ \sim 9.999GΩ: \pm (10\% \text{ of reading+1count}); \\ 10GΩ \sim 50GΩ: \pm (20\% \text{ of reading+1count}) \\ \pm (1\% + 5V) \text{ [maximum rated load - no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10mA \text{ max.} \\ 2kΩ \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ ON/OFF \\ \\ \hline 03.00A \sim 32.00A \text{ ac} \\ 0.01A \\ 3A \leq 1 \leq 8A: \pm (1\% \text{ of reading+0.2A}); \\ 8A < 1 \leq 32A: \pm (1\% \text{ of reading+0.05A}) \\ 8Vac \text{ max (open circuit)} \\ 50Hz/60Hz \text{ selectable} \\ 1mΩ \sim 650mΩ \\ \hline$	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\%+5\text{V}) \text{ [maximum rated load - no load]}\\ &\pm(1\% \text{ of reading + 5V})\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ \\ &03.00A \sim 32.00A \text{ ac}\\ &0.01A\\ &3A \leq I \leq 8A:\pm(1\% \text{ of reading+0.2A});\\ &8A < I \leq 32A:\pm(1\% \text{ of reading+0.05A})\\ &8Vac \text{ max (open circuit)}\\ &50\text{Hz/60Hz selectable}\\ &1\text{m}\Omega \sim 650\text{m}\Omega \end{split}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution Output-Current Accuracy Test-Voltage Test-Voltage Test-Voltage Frequency Ohmmeter Measurement Range Ohmmeter Measurement Resolution	$ 1MΩ \sim 500MΩ: \pm (5\% \text{ of reading+1count}); \\ 501MΩ \sim 9.999GΩ: \pm (10\% \text{ of reading+1count}); \\ 10GΩ \sim 50GΩ: \pm (20\% \text{ of reading+1count}) \\ \pm (1\% + 5V) \text{ [maximum rated load - no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10mA \text{ max.} \\ 2kΩ \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ ON/OFF \\ \hline $	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\%+5\text{V}) \text{ [maximum rated load - no load]}\\ &\pm(1\% \text{ of reading + 5V})\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ \\ &0.18\Delta \leq 1 \leq 8A:\pm(1\% \text{ of reading+0.2A});\\ &8A < 1 \leq 32A:\pm(1\% \text{ of reading+0.05A})\\ &8Vac \text{ max (open circuit)}\\ &50\text{Hz/60Hz selectable}\\ &1\text{m}\Omega \sim 650\text{m}\Omega\\ &0.1\text{m}\Omega \end{split}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution Output-Current Accuracy Test-Voltage Test-Voltage Frequency Ohmmeter Measurement Range Ohmmeter Measurement Resolution Ohmmeter Measurement Resolution	$ 1MΩ \sim 500MΩ: \pm (5\% \text{ of reading+1count}); \\ 501MΩ \sim 9.999GΩ: \pm (10\% \text{ of reading+1count}); \\ 10GΩ \sim 50GΩ: \pm (20\% \text{ of reading+1count}) \\ \pm (1\% + 5V) \text{ [maximum rated load - no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10mA \text{ max.} \\ 2kΩ \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ ON/OFF \\ \\ \hline 03.00A \sim 32.00A \text{ ac} \\ 0.01A \\ 3A \leq 1 \leq 8A: \pm (1\% \text{ of reading+0.2A}); \\ 8A < 1 \leq 32A: \pm (1\% \text{ of reading+0.05A}) \\ 8Vac \text{ max (open circuit)} \\ 50Hz/60Hz \text{ selectable} \\ 1mΩ \sim 650mΩ \\ \hline$	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\%+5\text{V}) \text{ [maximum rated load - no load]}\\ &\pm(1\% \text{ of reading + 5V})\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ \\ &03.00A \sim 32.00A \text{ ac}\\ &0.01A\\ &3A \leq I \leq 8A:\pm(1\% \text{ of reading+0.2A});\\ &8A < I \leq 32A:\pm(1\% \text{ of reading+0.05A})\\ &8Vac \text{ max (open circuit)}\\ &50\text{Hz/60Hz selectable}\\ &1\text{m}\Omega \sim 650\text{m}\Omega \end{split}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution Output-Current Accuracy Test-Voltage Test-Voltage Test-Voltage Frequency Ohmmeter Measurement Range Ohmmeter Measurement Resolution	$ 1MΩ \sim 500MΩ: \pm (5\% \text{ of reading+1count}); \\ 501MΩ \sim 9.999GΩ: \pm (10\% \text{ of reading+1count}); \\ 10GΩ \sim 50GΩ: \pm (20\% \text{ of reading+1count}) \\ \pm (1\% + 5V) \text{ [maximum rated load - no load]} \\ \pm (1\% \text{ of reading + 5V}) \\ 10mA \text{ max.} \\ 2kΩ \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ ON/OFF \\ \hline $	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\% + 5\text{V}) \text{ [maximum rated load - no load]}\\ &\pm(1\% \text{ of reading + 5\text{V}})\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ \\ &03.00A - 32.00A \text{ ac}\\ &0.01A\\ &3A \leq I \leq 8A:\pm(1\% \text{ of reading+0.2A});\\ &8A < I \leq 32A:\pm(1\% \text{ of reading+0.05A})\\ &8\text{Vac max (open circuit)}\\ &50\text{Hz/60Hz selectable}\\ &1\text{m}\Omega \sim 650\text{m}\Omega\\ &0.1\text{m}\Omega\\ &\pm(1\% \text{ of reading+2 m}\Omega) \end{split}$			
Voltage Regulation Voltmeter Accuracy Short-Circuit Current Output Impedance Window Comparator Method RAMP UP (Rise Time) RAMP DOWN (Fall Time) TIMER (Test Time)* WAIT TIME GND GROUND BOND Output-Current Output-Current Resolution Output-Current Accuracy Test-Voltage Test-Voltage Frequency Ohmmeter Measurement Range Ohmmeter Measurement Resolution Ohmmeter Measurement Accuracy Window Comparator Method	$ \begin{array}{l} 1 M \Omega \sim 500 M \Omega : \pm (5\% \ of \ reading + 1 count); \\ 501 M \Omega \sim 9.999 G \Omega : \pm (10\% \ of \ reading + 1 count); \\ 10 G \Omega \sim 50 G \Omega : \pm (20\% \ of \ reading + 1 count) \\ \\ \pm (1\% + 5V) \ [maximum \ rated \ load - no \ load] \\ \pm (1\% \ of \ reading + 5V) \\ 10 m A \ max. \\ 2 k \Omega \\ Yes \\ 0.1s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.0s \sim 999.9s \\ 0.N/OFF \\ \\ \hline \\ 03.00A \sim 32.00A \ ac \\ 0.01A \\ 3A \leq I \leq 8A : \pm (1\% \ of \ reading + 0.2A); \\ 8A < I \leq 32A : \pm (1\% \ of \ reading + 0.05A) \\ 8Vac \ max \ (open \ circuit) \\ 50 Hz/60 Hz \ selectable \\ 1 m \Omega \sim 650 m \Omega \\ 0.1 m \Omega \\ \pm (1\% \ of \ reading + 2 m \Omega) \\ Yes \\ \end{array} $	$\begin{split} &1M\Omega \sim 500M\Omega:\pm(5\% \text{ of reading+1count});\\ &501M\Omega \sim 9.999G\Omega:\pm(10\% \text{ of reading+1count});\\ &10G\Omega \sim 50G\Omega:\pm(20\% \text{ of reading+1count})\\ &\pm(1\% + 5V) \text{ [maximum rated load - no load]}\\ &\pm(1\% \text{ of reading + 5V})\\ &10\text{mA max.}\\ &2k\Omega\\ &\text{Yes}\\ &0.1s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &0.0s \sim 999.9s\\ &ON/OFF\\ \\ \\ &03.00A \sim 32.00A \text{ ac}\\ &0.01A\\ &3A \leq 1 \leq 8A:\pm(1\% \text{ of reading+0.2A});\\ &8A < 1 \leq 32A:\pm(1\% \text{ of reading+0.05A})\\ &8Vac \text{ max (open circuit)}\\ &50Hz/60Hz \text{ selectable}\\ &1m\Omega \sim 650m\Omega\\ &0.1m\Omega\\ &\pm(1\% \text{ of reading+2 m}\Omega)\\ &\text{Yes} \end{split}$			

CDT 15000 Caulas	CDT 12000 Caulan			
GPT-15000 Series	GPT-12000 Series			
100mA dc (fixed)	100mA dc (fixed)			
*****	0.10Ω~ 70.00Ω ΄			
****	0.01Ω			
\pm (10% of reading + 2 Ω)	$\pm (10\% \text{ of reading} + 2 \Omega)$			
	Yes			
0.3s~999.9s	0.3s~999.9s			
MANU: 100 blocks	MANU: 100 blocks			
AUTO : 100 blocks, Manu per auto : 10	AUTO: 100 blocks, Manu per auto: 10			
REMOTE, USB host	REMOTE, USB host			
Rear Output, RS-232C, USB device, Signal I/O,	Rear Output, RS-232C, USB device, Signal I/O,			
GPIB, LAN	GPIB, LAN			
7" color LCD	7" color LCD			
AC 100V~240V ± 10%, 50Hz/60Hz;	AC 100V~240V ± 10%, 50Hz/60Hz;			
Power consumption : Max. 1000VA	Power consumption : Max. 400VA			
	'			
GPT-15001/15002/15003:380(W)x148(H)x492(D)mm,	GPT-12001/12002/12003: 380(W) x 148(H) x 436(D) mm;			
	Approx. 11kg (max.);			
	GPT-12004: 380(W) x 148(H) x 454(D) mm;			
	Approx. 15kg			
	100mA dc (fixed) 0.10Ω~ 70.00Ω 0.01Ω ±(10% of reading + 2 Ω) Yes 0.3s~999.9s MANU: 100 blocks AUTO: 100 blocks, Manu per auto: 10 REMOTE, USB host Rear Output, RS-232C, USB device, Signal I/O, GPIB, LAN 7" color LCD AC 100V~240V ± 10%, 50Hz/60Hz; Power consumption: Max. 1000VA			

Note: * TIMER Accuracy: +/-(100ppm+20ms)

Specifications subject to change without notice.

GPT-10000CD1BH

OKDEKING	INFORMATION
GPT-15004	AC/DC/IR/GB Electrical Safety Analyzer
GPT-15003	AC/DC/IR Electrical Safety Analyzer
GPT-15002	AC/DC Electrical Safety Analyzer
GPT-15001	AC Electrical Safety Analyzer
GPT-12004	AC/DC/IR/GB Electrical Safety Analyzer
GPT-12003	AC/DC/IR Electrical Safety Analyzer
GPT-12002	AC/DC Electrical Safety Analyzer
GPT-12001	AC Electrical Safety Analyzer

Quick Start Guide x 1, Power cord x 1, CDx1 (complete user manual), Interlock Key x 1, Remote terminal Cable GHT-119 x 1,

Test lead GHT-115 x 1 for GPT-15001/15002/15003/12001/12002/12003, Test lead GHT-115 x 1, GTL-215 x 1 for GPT-15004/12004

Opt.1 GPIB card

Opt.2 LAN card

OPTIONAL ASSES

GHT-117/GHT-117(EU) High Voltage Adapter Box

GHT-118/GHT-118(EU) High Voltage/Ground Bond Adapter Box

GHT-113 High Voltage Test Pistol GHT-205 High Voltage Test Probe

GTL-232 RS232C Cable, 9-pin Female to 9-pin, null Modem for Computer

GTL-246 USB Cable, A-B type, approx. 1.2m GTL-248 GPIB Cable, approx. 2m

GRA-440 Rack Adapter Panel (19', 4U)

SELECTION GUIDE

Function Model	Output Capacity	AC	DC	IR	GB	Continuity	Rear Output
GPT-15001	500VA	✓				✓	✓
GPT-15002	500VA	✓	✓			✓	✓
GPT-15003	500VA	✓	1	✓		✓	✓
GPT-15004	500VA	✓	✓	✓	✓	✓	✓
GPT-12001	200VA	✓				✓	✓
GPT-12002	200VA	✓	✓			✓	✓
GPT-12003	200VA	✓	✓	✓		✓	✓
GPT-12004	200VA	✓	1	✓	1	✓	✓

Note: GPT-15000 Series ACW short current > 200mA

APPLICATIONS

• Safety Testing of Electrical Product in Manufacturing

Power Cord

Home Appliances

Information Technology Equipment

Medical Equipment

Household and Similar Electrical Appliances

Audio, Video and Similar Electronic Apparatus

- Quality Assurance Verification
- Safety Standard Compliance Pre-qualification in R&D

Global Headquarters

GOOD WILL INSTRUMENT CO., LTD.

No.7-1, Jhongsing Road, Tucheng Dist., New Taipei City 236, Taiwan T +886-2-2268-0389 F +886-2-2268-0639 E-mail: marketing@goodwill.com.tw

China Subsidiary

GOOD WILL INSTRUMENT (SUZHOU) CO., LTD.

No. 521, Zhujiang Road, Snd, Suzhou Jiangsu 215011 China T+86-512-6661-7177 F+86-512-6661-7277

Malaysia Subsidiarv

GOOD WILL INSTRUMENT (SEA) SDN. BHD.

No. 1-3-18, Elit Avenue, Jalan Mayang Pasir 3, 11950 Bayan Baru, Penang, Malaysia T+604-6111122 F+604-6115225

Europe Subsidiary

GOOD WILL INSTRUMENT EURO B.V.

De Run 5427A, 5504DG Veldhoven, THE NETHERLANDS T+31(0)40-2557790 F+31(0)40-2541194

U.S.A. Subsidiary

INSTEK AMERICA CORP.

5198 Brooks Street Montclair, CA 91763, U.S.A. T +1-909-399-3535 F +1-909-399-0819

Japan Subsidiary

TEXIO TECHNOLOGY CORPORATION.

7F Towa Fudosan Shin Yokohama Bldg., 2-18-13 Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033 Japan T +81-45-620-2305 F +81-45-534-7181

Korea Subsidiary

GOOD WILL INSTRUMENT KOREA CO., LTD.

Room No.503, Gyeonginro 775 (Mullae-Dong 3Ga, Ace Hightech-City B/D 1Dong), Yeongduengpo-Gu,

Seoul 150093, Korea. T +82-2-3439-2205 F +82-2-3439-2207

India Subsidiary

GW INSTEK INDIA LLP.

No.2707/B&C, 1st Floor UNNATHI Building, E-Block, Sahakara Nagar, Bengaluru-560 092. India T +91-80-6811-0600 F +91-80-6811-0626

